Characterization of the orthogonal decomposition of the hilbert space and application 空間的正交分解及其應(yīng)用
Orthogonal decomposition of seismic data is an important subject worth studying 摘要地震記錄正交分解是值得研究的重要問(wèn)題。
Zonal wavelets on the heisenberg group and the orthogonal decomposition for the function space 群上的帶狀小波及函數(shù)空間的正交分解
As an application of orthogonal decomposition of projection matrices , the method of juxtaposition is generalized 從而使所構(gòu)造的正交表具有更高的飽和率。
In orthogonal decomposition of projection matrices , a class of projection matrices ir tp tq are often encountered ?在投影矩陣的正交分解中,經(jīng)常會(huì)遇到一類(lèi)投影矩陣_ p (
It is the first time to have the theorem of orthogonal decomposition , a theoretical kernel in inverse gravimetric problem , realized in practice 使得這一定理實(shí)際應(yīng)用于場(chǎng)源結(jié)構(gòu)的解釋與分析成為可能。
The paper introduce neural network learning algorithm to seismic data processing , propose orthogonal decomposition approach of seismic data via neural network 本文將人工神經(jīng)網(wǎng)絡(luò)自組織學(xué)習(xí)算法引入到地震數(shù)據(jù)處理中,提出地震數(shù)據(jù)神經(jīng)網(wǎng)絡(luò)正交分解方法。
The orthogonal decomposition are made respectly to the quasi - harmonic and multi - harmonic resources of gravity field in inverse gravimetric problem 文章針對(duì)物理大地測(cè)量學(xué)反問(wèn)題研究中的擬調(diào)和性重力場(chǎng)源及重調(diào)和性重力場(chǎng)源,將該研究中的理論核心正交分解定理予以具體實(shí)現(xiàn)。
It is shown in the empirical orthogonal decomposition of the number of thunderstorm and lightning days there is a clear declining tendency in the number of both for the period of interest 對(duì)年雷暴日、閃電日的經(jīng)驗(yàn)正交分解表明,在研究的時(shí)間段內(nèi),廣東省年的雷暴日、閃電日都有明顯減少的趨勢(shì)。
The main results are listed in the following : method for constructing orthogonal arrays by orthogonal decomposition of projection matrices and matrix images of smaller orthogonal arrays are further investigated 具體內(nèi)容如下: ?進(jìn)一步研究了由投影矩陣的正交分解構(gòu)造正交表的方法以及小正交表的矩陣象。